merged_df = pd.merge(previous_weekly_performance, current_weekly_performance, how ='outer')merged_df.head()
fiscal year
start date
previous_weekly_performance
previous_cumulative_performance
current_weekly_performance
current_cumulative_performance
0
2024
2023-07-02
15
15
15
15
1
2024
2023-07-09
77
92
77
92
2
2024
2023-07-16
99
191
98
190
3
2024
2023-07-23
71
262
72
262
4
2024
2023-07-30
72
334
72
334
In [17]:
merged_df.to_csv("weekly_performance.csv", index =False)
# Plotting 1# Set 'start date' as the index for better plottingmerged_df.set_index('start date', inplace=True)fig, ax = plt.subplots(figsize=(12, 8))# Width of the barsbar_width =0.35# Positions of the barsindex =range(len(merged_df))# Plotting 'previous_weekly_performance'bars1 = ax.bar(index, merged_df['previous_weekly_performance'], width=bar_width, label='Previous Weekly Performance', color='b')# Plotting 'current_weekly_performance' shifted right by bar_width to place next to the previousbars2 = ax.bar([p + bar_width for p in index], merged_df['current_weekly_performance'], width=bar_width, label='Current Weekly Performance', color='r')# Adding labels, title, and legendax.set_xlabel('Start Date')ax.set_ylabel('Weekly Performance')ax.set_title('Comparison of Previous and Current Weekly Performance')ax.legend()# Set x-ticks to be in the middle of the two bars for each dateax.set_xticks([p + bar_width /2for p in index])ax.set_xticklabels(merged_df.index.strftime('%Y-%m-%d'), rotation=45)plt.show()# Plotting 2# Resetting the index to put 'start date' back as a regular columnmerged_df.reset_index(inplace=True)plt.figure(figsize=(10, 6))# Plotting the 'previous_cumulative_performance'plt.plot(merged_df['start date'], merged_df['previous_cumulative_performance'], label='Previous Cumulative Performance', marker='o')# Plotting the 'current_cumulative_performance'plt.plot(merged_df['start date'], merged_df['current_cumulative_performance'], label='Current Cumulative Performance', marker='o')plt.title('Comparison of Previous and Current Cumulative Performance Over Time')plt.xlabel('Start Date')plt.ylabel('Cumulative Performance')plt.legend()plt.grid(True)plt.xticks(rotation=45) # Rotates the dates on the x-axis for better visibilityplt.tight_layout() # Adjusts plot parameters to give some padding and prevent overlapplt.show()
(a) The bar chart shows weekly performance trends for previous and current periods, highlighting fluctuations and potential seasonal patterns. This dense representation helps identify key variations but can be visually complex.
(b) The line chart offers a clearer view of performance over time by smoothing out weekly noise and emphasizing long-term trends.
Figure 1: Initial stages of the data visualization workflow, creating basic plots to explore and refine key trends